Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly harmful environmental pollutant particularly relevant to waterways. These molecules have characteristic absorption and fluorescence spectra; however, their low effective concentrations makes their chemical sensing and quantitation challenging. We established that these hydrocarbons modulate the emission of the fluorescent moieties embedded in poly(fluorene) conjugated polymers to which we introduced variations in the conjugated core, as well as in the branches coming off the backbone. We focused on polymers including phenylbenzimidazole groups or polyethylene glycol chains as pendant chains. We showed that small PAH molecules quenched the fluorescence of these polymers based on an inner-filter effect whose effectiveness is characteristic of each PAH structure, thus making these polymers effective promiscuous sensors for these hydrocarbons. Indeed, we showed that the interaction patterns between these polymers and the "EPA 16" PAHs is sufficiently rich and nuanced that it contains sufficient information for chemical differentiation of these species.